报告时间: 2021年01月15日 14:00-17:20
报告地点: 电子科技大学数学科学学院513学术报告厅
报告题目:Variational and numerical analysis of a dynamic viscoelastic contact problem with friction and wear
报告人:四川大学 黄南京 教授
报告摘要:In this talk, we consider a dynamic viscoelastic contact problem with friction and wear, and describe it as a system of nonlinear partial differential equations. We formulate the previous problem as a hyperbolic quasi-variational inequality by employing the variational method. We adopt the Rothe method to show the existence and uniqueness of solution for the hyperbolic quasi-variational inequality under mild conditions. We also give a fully discrete scheme for solving the hyperbolic quasi-variational inequality and obtain error estimates for the fully discrete scheme.
报告人简介:黄南京,博士, 四川大学二级教授,运筹学和控制论专业博士生导师, 金融数学和计量经济学专业博士生导师,四川省学术带头人,四川省专家评议(审)委员会成员。主持过国家自然科学基金和教育部基金项目多项,在变分不等式和不动点理论及应用、向量优化和非线性规划理论及应用以及金融资产定价和投资组合优化等方面的研究工作成绩突出。在国内外知名学术期刊上发表相关专业论文多篇,与他人合作出版教材、著作4本,研究成果曾获教育部自然科学一等奖和教育部科技进步一等奖、二等奖。
报告题目:A method for solving the split equality problem via a projection dynamical system
报告人:四川大学 方亚平 教授
报告摘要:In this talk we propose a projection dynamical system for solving the split equality problem, or more generally the approximate split equality problem, in Hilbert spaces. The proposed dynamical system endows with the continuous behavior with time for Moudafi's alternating CQ-algorithm and Byrne and Moudafi's extended CQ-algorithm. Under mild conditions we prove that the trajectory of the dynamical system converges weakly to a solution of the approximate split equality problem as the time variable t goes to +infinity. We further derive the exponential-type convergence provided that a bounded linear regularity property holds for the split equality problem.
报告人简介:方亚平, 四川大学数学学院教授, 博士研究生导师。一直从事优化理论与方法等领域的研究,其研究成果发表在包含OR,EJOR、JOTA与JOGO等优化领域的主流期刊上,受到国内外同行的广泛关注与好评。据ISI 数据库显示其论文的h-index为21。2014-2019年连续6年入选爱思维尔(Elsevier)数学学科中国高被引学者名单。主持过国家自然科学基金面上项目、青年基金项目以及数学天元基金项目各一项。曾荣获四川省科技进步三等奖(排名第三)以及重庆市自然科学三等奖(排名第三)各一项。是第十一批四川省学术和技术带头人后备人选。
报告题目:Random and Cyclic Relaxed Projection Algorithms for Convex Minimization Problems
报告人:四川师范大学 夏福全 教授
报告摘要: In this talk, we deal with the relaxed projection algorithms with random and cyclic feasibility steps for solving constrained convex minimization problems, where the constrained set
is the intersection of possibly infinitely many constraint sets
, and the objective function
could be a sum of a large number of component functions
. Each constraint sets
is assumed to be given as a level set of a convex but not necessarily differentiable function. The relaxed projection algorithm is considered for randomization schemes and for cyclic schemes for the component functions
and the constraint sets
. Accordingly, this algorithm is named random relaxed projection algorithm and cyclic relaxed projection algorithm. In random relaxed projection algorithm, on every iteration, we select randomly
. Using the subgradient of objective function
, we random projection onto a suitable halfspace containing the set
replace the projection onto constrained sets
. In cyclic relaxed projection algorithm, we select cyclically component function
and random
. Using the subgradient of this component function
, we random projection onto a suitable halfspace containing the set
replace the projection onto constrained sets
. On each step, we consider the relaxed projection algorithm applied to single components
and single
, as well as the whole objective function
and constraint set
. Under some suitable assumptions, the method is shown to be convergent to the solution of convex minimization problem in almost sure sense. Preliminary computational experience is also reported.
报告人简介:夏福全,博士,教授,博士研究生导师。主要从事最优化理论及应用方面的研究。已在国内外学术刊物上发表SCI收录论文30余篇,主持了四川省教育厅基金,四川省科技厅应用基础项目,教育部博士点基金和教育部重点项目。应邀多次访问了韩国的Gyeongsang大学和Gyungnam大学,台湾的高雄医学大学和长庚大学。
报告题目:Three Fundamental Theorems in Convex Analysis and Their Extensions
报告人:西华师范大学 李军 教授
报告摘要:In this talk, we will extend three fundamental theorems in classical convex analysis, i.e., Caratheodory’s theorem, Radon’s lemma and Helly’s theorem, from
to
.
报告人简介:李军,男,博士,西华师范大学教授,研究方向为优化理论及应用、非线性分析及应用,在SIOPT、EJOR、JCA、JOTA、 JOGO、OP、Sci. China Math.等国际、国内主流期刊上发表论文多篇,主持国家自然科学基金面上项目和青年基金、教育部科学技术重点项目、四川省杰出青年学术技术带头人培育计划等多项,获四川省科技进步奖自然科学类三等奖1项,四川省高校创新团队《非线性分析及最优化》带头人。
报告题目:Well-posedness of second order differential mixed inverse quasi-variational inequalities
报告人:四川大学 李雪松 副教授
报告摘要:In this talk, we focus on the strong well-posedness and well-posedness in the generalized sense for a kind of second order differential mixed inverse quasi-variational inequalities (DMIQVIs) in Hilbert spaces. Using the approximating solution sequence, we characterize the sufficient and necessary conditions related to the metric characterizations and the strong well-posedness of DMIQVIs under suitable conditions. With respect to the well-posedness in the generalized sense for DMIQVIs, we provide the equivalent conditions by means of the Hausdorff metric and measure of noncompactness.
报告人简介:李雪松,四川大学副教授,运筹学和控制论专业硕士研究生导师。主要研究方向为变分不等式与微分变分不等式、博弈论与微分博弈论、非凸优化与微分优化的理论、算法及其应用方面的研究,在研究过程中积累了较好的工作基础。曾多次在香港理工大学物流及航运学系、香港城市大学航贸金融研究中心从事访问交流工作。近年来在国内、国际知名的学术期刊《Nonlinear Anal. TMA》、《J. Franklin Inst.》、《Optimization》、《Optim. Lett.》等发表相关论文20 余篇。主持完成2项国家自然科学基金项目,参与完成多项国家自然科学基金项目。报告人曾参加于2011 年11 月13 日至16 日在美国Charlotte 举行的国际顶级学术会议“INFORMS 2011Annual Meeting”并做学术报告。