报告题目:An existence result for weakly homogeneous variational inequalities
报 告 人:天津大学 黄正海 教授
报告时间:2021年3月20日(周六)上午9:30-10:15
报告地点:清水河校区主楼A1-513
邀 请 人:肖义彬 教授
报告摘要:
In this talk, what we concern about is the weakly homogeneous variational inequality over a finite dimensional real Hilbert space. We achieve an existence result with copositivity of leading term of the involved map, norm-coercivity of the natural map and several additional conditions. These conditions we used are easier to check and cross each other with those utilized in the main result established by Gowda and Sossa (Math Program 177:149-171, 2019). Our result enriches the theory for weakly homogeneous variational inequalities and its subcategory problems in the sense that the main result established by Gowda and Sossa covers a majority of existence results on the subcategory problems of weakly homogeneous variational inequalities. Besides, we compare our result with the well-known coercivity result and a norm-coercivity result obtained for general variational inequalities, respectively.
报告人简介:
黄正海,天津大学数学学院教授、博士生导师。主要从事最优化理论、算法及其应用方面的研究工作,在求解互补与变分不等式问题、对称锥优化与对称锥互补问题、稀疏优化、张量优化、核磁共振医学成像、人脸识别等方面取得了一些有意义的成果。目前的主要研究兴趣是张量优化、特殊结构的变分不等式与互补问题、以及机器学习中的优化理论方法及其应用。已发表SCI检索论文110多篇、连续获得多项国家自然科学基金资助。曾获得中科院优秀博士后奖和教育部高等学校自然科学奖二等奖。目前为中国运筹学会常务理事;国际期刊《Pacific Journal of Optimization》、《Applied Mathematics and Computation》和《Optimization,Statistics & Information Computing》的编委、中国核心期刊《运筹学学报》的编委。